EDUCATION AND NEW DEVELOPMENTS
2023
VOLUME I

Edited by
Mafalda Carmo
Education and New Developments
2023

Volume 1

Edited by
Mafalda Carmo
Edited by Mafalda Carmo, World Institute for Advanced Research and Science (WIARS), Portugal

Published by inScience Press, Rua Tomas Ribeiro, 45, 1º D, 1050-225 Lisboa, Portugal

Copyright © 2023 inScience Press

All rights are reserved. Permission is granted for personal and educational use only.
Commercial copying, hiring and lending is prohibited. The whole or part of this publication material cannot be reproduced, reprinted, translated, stored or transmitted, in any form or means, without the written permission of the publisher. The publisher and authors have taken care that the information and recommendations contained herein are accurate and compatible with the generally accepted standards at the time of publication.
The individual essays remain the intellectual properties of the contributors.

ISSN (electronic version): 2184-1489
ISSN (printed version): 2184-044X
ISBN: 978-989-35106-3-6

Legal Deposit: 428062/17
Printed in Lisbon, Portugal by GIMA - Gestão de Imagem Empresarial, Lda.
BRIEF CONTENTS

Foreword v
Organizing and Scientific Committee vii
Sponsor xii
Keynote Lecture xiii
Index of Contents xv
FOREWORD

This book contains the full text of papers and posters presented at the International Conference on Education and New Developments (END 2023), organized by the World Institute for Advanced Research and Science (WIARS).

Education is a fundamental right that accompanies us from the very beginning of our lives. It encompasses every experience we encounter, influencing and shaping our thoughts, emotions, and actions. Whether we engage in formal education within classrooms or learn from the world around us, the process of acquiring knowledge plays a vital role in our personal growth and development. It equips us with the tools to navigate the complexities of life, broadens our perspectives, and empowers us to make informed decisions. This International Conference seeks to provide some answers and explore the processes, actions, challenges and outcomes of learning, teaching and human development. Our goal is to offer a worldwide connection between teachers, students, researchers and lecturers, from a wide range of academic fields, interested in exploring and giving their contribution in educational issues.

We have brought together a diverse group of individuals with various backgrounds to contribute their unique perspectives and knowledge on Education. By including people from different nationalities and cultures, we aim to create a rich plethora of experiences that can broaden our understanding of human nature and behavior. The exchange of ideas and experiences among our participants helps to cultivate personal and academic development, providing a platform for the exploration of new insights and discoveries.

END 2023 received 758 submissions, from more than 45 different countries, reviewed by a double-blind process. Submissions were prepared to take form of Oral Presentations, Posters, Virtual Presentations and Workshops. The conference accepted for presentation 279 submissions (37% acceptance rate).

The conference also includes one Keynote presentation by Dr. Omid Noroozi, Associate Professor of Educational Technology, Wageningen University and Research (WUR), The Netherlands. We would like to express our gratitude to our invitee.

This conference addressed different categories inside the Education area and papers are expected to fit broadly into one of the named themes and sub-themes. To develop the conference program, we have chosen four main broad-ranging categories, which also covers different interest areas:

- In **TEACHERS AND STUDENTS**: Teachers and Staff training and education; Educational quality and standards; *Curriculum* and Pedagogy; Vocational education and Counselling; Ubiquitous and lifelong learning; Training programs and professional guidance; Teaching and learning relationship; Student affairs (learning, experiences and diversity); Extra-curricular activities; Assessment and measurements in Education.

- In **PROJECTS AND TRENDS**: Pedagogic innovations; Challenges and transformations in Education; Technology in teaching and learning; Distance Education and eLearning; Global and sustainable developments for Education; New learning and teaching models; Multicultural and (inter)cultural communications; Inclusive and Special Education; Rural and indigenous Education; Educational projects.

- In **TEACHING AND LEARNING**: Critical, Thinking; Educational foundations; Research and development methodologies; Early childhood and Primary Education; Secondary Education; Higher Education; Science and technology Education; Literacy, languages and Linguistics (TESL/TEFL); Health Education; Religious Education; Sports Education.

- In **ORGANIZATIONAL ISSUES**: Educational policy and leadership; Human Resources development; Educational environment; Business, Administration, and Management in Education; Economics in Education; Institutional accreditations and rankings; International Education and Exchange programs; Equity, social justice and social change; Ethics and values; Organizational learning and change, Corporate Education.
The contributions were published across two volumes, and this is the Volume 1 of the book titled *Education and New Developments 2023*, that showcases the outcomes of dedicated research and developments undertaken by authors who are driven by their passion to enhance research methods that directly relate to teaching, learning, and the practical applications of education in the present day. Within its pages, you will find a diverse array of contributors and presenters who expand our perspectives by delving into various educational matters.

This first volume focuses on the main areas of TEACHERS AND STUDENTS and TEACHING AND LEARNING, being the contributions of the other two areas published in Volume 2.

We would like to express thanks to all the authors and participants, the members of the academic scientific committee, and of course, to our organizing and administration team for making and putting this conference together.

Hoping to continue the collaboration in the future.

Respectfully,

Mafalda Carmo
World Institute for Advanced Research and Science (WIARS), Portugal
Conference and Program Chair

Lisbon, Portugal, 24 - 26 June, 2023
ORGANIZING AND SCIENTIFIC COMMITTEE

Organizer

World Institute for Advanced Research and Science (WIARS)
www.wiars.org

Conference and Program Chair

Mafalda Carmo
World Institute for Advanced Research and Science (WIARS), Portugal

International Scientific Committee

Aaron R. Deris, Minnesota State University, USA
Abha Gupta, Old Dominion University, USA
Adrián Ponz Miranda, Zaragoza University, Spain
Ahmad Razak, University of Malaya, Malaysia
Ahmet Ok, Middle East Technical University, Turkey
Alan Singer, Hofstra University, USA
Ali Baykal, Bahcesehir University, Turkey
Ana Conboy, College of Saint Benedict and Saint John’s University, USA
Ana Hernández Espino, Autonomous University of Madrid, Spain / The Labor University of Uruguay, Uruguay / National University of Entre Ríos, Argentina
Ana–Maria Bercu, Alexandru Ioan Cuza University of Iasi, Romania
Anastasia Gouseti, University of Hull, UK
Anca Draghici, Politehnica University of Timisoara, Romania
Andis Klegeris, University of British Columbia Okanagan, Canada
Andrea Fiorucci, University of Salento, Italy
Andrea Hathazi, Babeș-Bolyai University, Romania
Angela Piu, University of Valle d’Aosta, Italy
Anja María Mackelday, Colegio Alemán Medellín / Universidad de Antioquia, Colombia
Anna Lazou, National & Kapodistrian University of Athens, Greece
Antoni Kolek, University of Social Sciences, Poland
Aphrodite Ktena, National and Kapodistrian University of Athens, Greece
Arindam Basu, University of Canterbury, New Zealand
Aviva Dan, Ohalo Academic Education College, Israel
Beatriz Carrasquera Alvarez, Zaragoza University, Spain
Begoña Sampedro, University of Cordoba, Spain
Birgit Schmiedl, University College of Teacher Education Lower Austria, Austria
Borja Manzano Vázquez, University of Granada, Spain
Branka Zolak Poljasevic, University of Banja Luka, Bosnia and Herzegovina
Burcu Koç, Sakarya University, Turkey
Çağla Atmaca, Pamukkale University, Turkey
Carolina Bodea Hategan, Babeș-Bolyai University, Romania
Caroline Akhras, Notre Dame University, Lebanon
Celia MacDonnell, University of Rhode Island and Brown University, USA
Cezar Scarlat, University "Politehnica" of Bucharest, Romania
Chantal Ouellet, Universite du Quebec a Montreal, Canada
Charalampos Karagiannis, University of Thessaly, Greece
Cheng-Hsuan Li, National Taichung University of Education, Taiwan
Chiara Uliana, University of Granada, Spain
Chien-ming Cheng, National Academy for Educational Research, Taiwan

Christian David Quintero Guerrero, Nueva Granada Militar University, Colombia

Christos Manasis, National and Kapodistrian University of Athens, Greece

Chuang Wang, University of Macau, Macau

Colleen M. Halupa, East Texas Baptist University, USA

Cory A. Bennett, Idaho State University, USA

Cristiana Pizarro Madureira, ESECS – Instituto Politécnico de Leiria, Portugal

Cristiano Luchetti, American University of Ras Al Khaimah, United Arab Emirates

Dale Kirby, Memorial University, Canada

Dalia Hanna, Ryerson University, Canada

Daniela Pasnicu, Spiru Haret University, Romania

David Aparisi, University of Alicante, Spain

David Nocar, Palacký University in Olomouc, Czech Republic

Devorah Eden, Western Galilee College, Israel

Diana Maria Cismaru, National University of Political Studies and Public Administration (SNSPA Bucharest), Romania

Diane Booth, Boise State University, USA

Dimitris Dranidis, The University of Sheffield International, Greece

Dimitris Kilakos, National & Kapodistrian University of Athens, Greece

Donata Puntil, Kings College London, UK

Dorina Anca Talas, Babeș-Bolyai University, Romania

Douglas Balesht, Thompson Rivers University, Canada

Ean Teng Khor, Nanyang Technological University, Singapore

Elena Baguzina, Moscow State Institute of International Relations, Russian Federation

Elena Polyudova, Peoples Friendship University of Russia, Russian Federation

Elisa Bertolotti, University of Madeira; ID+; ITI / LARSyS, Portugal

Elizabeth Sandell, Minnesota State University, USA

Emel Dikbas Torun, Pamukkale University, Turkey

Eva Trnová, Masaryk University, Czech Republic

Evangelina Bonifácio, Polytechnic Institute of Bragança, Portugal

Fausto Brevi, Politecnico di Milano, Italy

Gabriella Velics, Eotvos Lorand University, Hungary

Gina Chianese, University of Trieste, Italy

Gina Aurora Necula, Dunarea de Jos University of Galati, Romania

Gráinne Ni Dhomhaíl, University College Dublin, Ireland

Grischa Schmiedl, University of Applied Science St. Pölten, Austria

Gyöngyi Bujdosó, University of Debrecen, Hungary

Hana Vančová, Trnava University, Slovakia

Héctor Tronchoni, Florida Universitaria in Catarroja, Spain

Helena Skarupska, Tomas Bata University, Czech Republic

Helin Puksand, Tallinn University, Estonia

Henri Jacobs, Central University of Technology, Free State (CUT), South Africa

Huseyin Bicen, Near East University, Nicosia, Cyprus

Ilijana Čutura, University of Kragujevac, Serbia

Ilona Tandzegolskienė, Vytautas Magnus University, Lithuania

Ina Blau, The Open University of Israel, Israel

Ioana Velica, Babeș-Bolyai University, Romania

Ioana Letiția Șerban, Babeș-Bolyai University, Romania

Jacquelynn Baker-Sennett, Western Washington University, USA

Janaina Cardoso, Rio de Janeiro State University, Brazil

Javier Casanoves-Boix, Universidad Internacional de Valencia, Spain

Jeannette Jones, Texas Lutheran University, USA
Jenni Sanguiliano Lonski, Rollins College, USA

Jitka Hloušková, Independent Education Professional, Czech Republic

Joana Romanowska, UNINTER - Centro Universitario Internacional, Brazil

Joanna Paliszkiewicz, Warsaw University of Life Sciences, Poland

Jose Augusto Oliveira Huguenin, Universidade Federal Fluminense, Brazil

José Luis Ortega-Martín, University of Granada, Spain

Juana Maria Sancho Gil, University of Barcelona, Spain

Karel Němejc, Czech University of Life Sciences Prague, Czech Republic

Kateřina Vitásková, Palacký University in Olomouc, Czech Republic

Konstantinos Kalemis, National and Kapodistrian University of Athens, Greece

Kyparissia Papanikolaou, School of Pedagogical and Technological Education, Greece

Ladário da Silva, Universidade Federal Fluminense (UFF), Brazil

Laura Rio, University of Bologna, Italy

Leela Ramsook, University of Trinidad and Tobago, Trinidad and Tobago

Lefkothea Kartasidou, University of Macedonia, Greece

Lefkothea-Vasiliki Andreou, University of Ioannina, Greece

Leila Kajee, University of Johannesburg, South Africa

Les Szandera, Thomas Jefferson University, USA

Loreta Chodziene, Vilnius University, Lithuania

Lorna M. Dreyer, Stellenbosch University, South Africa

Lucio G. Veraldo Jr., Infinity Academy 3d, Brazil

Luis Gonzaga Roger Castillo, Universidad de Granada (UGR), Spain

Łukasz Tomczyk, Jagiellonian University, Poland

Luminita Cocarta, Al. I. Cuza University of Iasi, Romania

Lydia Mavuru, University of Johannesburg, South Africa

Maciej Debski, University of Social Sciences, Poland

Magdalena Chrappán, University of Debrecen, Hungary

Maja Seric, University of Valencia, Spain

Małgorzata Cieciura, Polish-Japanese Academy of Information Technology, Poland

Manfred Meyer, Westfälische Hochschule, Germany

Manhong Lai, The Chinese University of Hong Kong, China

Marcin Fojek, Western Norway University of Applied Sciences, Norway

Marga Vives Barceló, University of the Balearic Islands, Spain

Maria Lopes de Azevedo, ESECS, Polytechnic Institute of Portalegre, Portugal

Maria Carme Boqué Torremorell, Ramon Llull University, Spain

María José Latorre, University of Granada, Spain

Marko Slavkovic, University of Kragujevac, Serbia

Marta Talavera, University of Valencia, Spain

Marzena Wójcik-Augustyniak, Siedlce University of Natural Sciences and Humanities, Poland

Maya Wizel, Middlebury College, USA / Kibbutzim College, Israel

Mayara de Carvalho Santos, Butantan Institute, Brazil

Megan Purcell, Purdue University, USA

Melissa Caspary, Georgia Gwinnett College, USA

Michael Reiner, IMC University of Applied Sciences Krems, Austria

Milan Kubiatko, Jan Evangelista Purkyně University, Czech Republic

Mohammad Ahmad Abdeldayem, Zagazig University, Egypt

Mohd Norazmi bin Nordin, Universiti Kebangsaan Malaysia, Malaysia
Napak-on Sritrakarn, ILSC & Greystone College, Australia
Natalie Lavoie, University of Quebec in Rimousk, Canada
Natasa Vlah, University of Rijeka, Croatia
Nazzario Zambaldi, Free University of Bolzano, Italia
Omid Noroozi, Wageningen University & Research, The Netherlands
Onur Ergunay, George Mason University, USA
Ozgur Kosaner, Dokuz Eylul University, Turkiye
Paolo Sorzio, University of Trieste, Italy
Pascal Marquet, University of Strasbourg, France
Paula Miranda, Polytechnic Institute of Setubal, Portugal
Paul Sage, Queen's University, Belfast, UK
Pavel Brebera, University of Pardubice, Czech Republic
Pawel Pokutycki, Royal Academy of Art (KABK), The Hague, The Netherlands
Pawel Topol, Adam Mickiewicz University in Poznan, Poland
Pule Phindane, Central University of Technology, South Africa
Raluca Trifu, UMF Iuliu Hatieganu from Cluj Napoca, Romania
Rasa Nedzinskaitė-Mačiūnienė, Vytautas Magnus University, Lithuania
Remigijus Bubnys, Kaunas University of Technology, Lithuania
Richard C. Kalunga, University of the District of Columbia, USA
Rita Franceschini, University Vita Salute San Raffaele, Italy
Rosanna Tammaro, University of Salerno, Italy
Ryuichi Matsuba, Tokyo University of Technology, Japan
Sam Ramaila, University of Johannesburg, South Africa
Seppo Sirkensaa, University of Turku, Finland
Sheryl Williams, Loughborough University, United Kingdom
Silmar José Spinardi Franchi, Federal University of Santa Catarina, Brazil
Silvania Alves de Carvalho, Universidade Federal Fluminense, Brazil
Simon Richir, Arts et Metiers (ENSAM), France
Simone Brasili, University of Camerino, Italy
Soane Joyce Mohapi, University of South Africa, South Africa
Stefania Pinnelli, University of Salento, Italy
Stephanie Linek, ZBW - Leibniz Information Centre for Economics, Germany
Susan Scott, Lakehead University, Canada
Susanne Schumacher, Free University of Bozen, Italy
Suzie Savvidou, The University of Sheffield International Faculty, CITY College, Greece
Syed Ziaur Rahman, Majan University College, Oman
Tatjana Portnova, Russian Center of The University of Granada, Spain
Temenujka Zasirova Malcheva, Sofia University “St. Kliment Ohridski”, Bulgaria
Tena Velki, Josip Juraj Strossmayer University of Osijek, Croatia
Théodore Njingang Mbadjoin, University Lumière Lyon 2, France
Ulrike Stadler-Altmann, Free University of Bozen, Italy
Valentina Vezzani, University of Madeira, Portugal
Vashti Singh, University of Guyana, Guyana
Vassilios Argyropoulos, University of Thessaly, Greece
Verónica Yanez-Monje, University of Concepcion, Chile
Vicente J. Llorent, University of Cordoba, Spain
Victor Fester, University of Waikato, New Zealand
Wendy Settalentoa, Central University of Technology, South Africa
Wiktor Bolkunow, Warsaw School of Economics, Poland
Xenia Liashuk, Trnava University, Slovakia
Yelkin Diker Coşkun, Yeditepe University, Türkiye

Yevgeniya Daineko, International IT University, Kazakhstan

Yogesh Kumar Sharma, Former Vice Chancellor Singhania University, India

Yonghuai Liu, Edge Hill University, United Kingdom

Youngsoon Kim, Inha University, South Korea

Zoltán Rónay, Eötvös Loránd University, Hungary
PRACTICING SOCIAL-EMOTIONAL AND COGNITIVE TEACHING STRATEGIES AND STEAM ACTIVITIES IN EARLY CHILDHOOD EDUCATION

Ona Monkevičienė, Birutė Vitytė, & Birutė Autukevičienė
Vytautas Magnus University/Education Academy (Lithuania)

Abstract

STEAM education is recognized as an efficient practice of holistic education, which is already relevant at the stage of early childhood education. STEAM research focuses on the search for models of interdisciplinary integration and the justification of innovative educational approaches. The aim of this paper is to reveal the relationship between practicing social-emotional and cognitive teaching strategies and STEAM activities in early childhood education. The conducted quantitative study reveals that the population of early childhood teachers is heterogeneous in terms of practicing teaching strategies and STEAM activities. Early childhood teachers, who use social-emotional and cognitive teaching strategies with equal frequency, also often use integrated STEAM activities in young children education. Other teachers prioritise social-emotional teaching strategies and pay less attention to cognitive teaching strategies, although the latter have a slightly stronger link to the development of STEAM practices. Teachers who are less likely to use cognitive strategies to teach young children tend to use STEAM activities less frequently.

Keywords: Early childhood, STEAM, social-emotional teaching strategies, cognitive strategies.

1. Introduction

STEAM (Science, Technology, Engineering, Arts, Maths) is defined as an integrated approach to education in these fields, as a model of inquiry-based, creative, interdisciplinary education, and as education based on solving real-life problems (English, 2016; Yata et al., 2020). STEAM education in many countries is related to the pursuit of technological breakthroughs, which need to stimulate learners' interest in science, mathematics, technology and engineering (DeJarnette, 2018). Research is actively carried out to find the best model for the integration of STEAM education domains, and the following models are distinguished: a model for exploring phenomena (water, energy, etc.) from a cross-disciplinary perspective (Aydin, 2020), engineering or technology education as a cross-disciplinary integrative field, and others (English, 2016; Bati et al., 2018; Yata et al., 2020; Aydin, 2020; Kastriti et al., 2022).

STEAM activities in early childhood education take the form of playful, spontaneous, and teacher-initiated interest in the world around children, exploring natural objects and phenomena (water, wind, diversity of life, the Earth, etc.) by asking questions, observing, experimenting, and drawing conclusions (science education); exploring the purpose, function, and operation of tools, instruments, technological processes, and mechanisms (measuring instruments, digital microscopes, pulleys, wheels, etc.), creating models, and testing them (technology education); designing, building, constructing different structures (houses, bridges, roads, robots, etc.), exploring the properties of materials (bricks, Lego, robotics kits, natural materials), and understanding the phenomena of stability, balance, etc. (engineering); activities involving calculation, measurement (maths), design (arts). (Campbell et al., 2018; Aldemir & Kermni, 2016; Ata Aktürk et al., 2017; Knaus & Roberts, 2017).

A wide range of research studies reveal how methods applied by teachers support and extend children's interest in STEAM activities and promote the development of their knowledge and skills. The emphasis is placed on methods that promote cognitive processes: raising hypotheses, observing, clarifying, questioning, exploring, experimenting, modelling, designing and redesigning, predicting, and developing higher order thinking skills of children (Yata et al., 2020; Aydin, 2020). According to Kastriti et al. (2022), these are scientific tools that should be used in a creative way. This is what children learn when the arts are integrated into the concept of STEM.

In their systematic review of research on teaching methods in STEAM education, Kastriti et al. (2022) highlight the most effective approaches to STEAM education - Project Method, Problem-Based...
Learning, Inquiry-Based Learning, and Discovery Method. These approaches are also more associated with motivation and cooperation. Social-emotional approaches to teaching are less often emphasised in STEAM educational process, including STEAM education (Laureta, 2018).

In the present study, we analyse the social-emotional teaching strategies used by early childhood teachers in STEAM education, which include the Pedagogy of Listening to the Child, the Personalised Dialogue-Based Educational Interaction with the Child, Emotionally Engaged Learning, and Self-Regulated Learning. Attention was also allocated to cognitive teaching strategies, which include Experiential Development of Higher Order Thinking Skills (discriminate, compare, group, model, predict, reason), Promoting Deep Learning, and Reflective Learning. Attempts were made to reveal how social-emotional and cognitive teaching strategies practiced by early childhood teachers relate to the practice of STEAM activities. Recognising that the teacher population will not be homogeneous, we have analysed the grouping of teachers according to the characteristics of these practices.

2. Objectives

The objectives of the research were: a) to reveal the clusters of teachers according to social-emotional and cognitive teaching strategies and STEAM activities they practise in early childhood education; b) to establish the relationship between the frequency of using social-emotional and cognitive teaching strategies and the frequency of practising STEAM activities.

3. Methods

The research instrument. A quantitative research approach (Cohen, Manion, & Morrison, 2018) and survey design (Creswell, 2014) were used to conduct the study. The self-reported online questionnaire was designed following a theoretical construct. The questionnaire consists of seven subscales (46 items): two subscales focus on application of social-emotional and cognitive teaching strategies for organizing STEAM activities; five subscales are designed to reveal the integral practices used by educators in science, technology, engineering, art and mathematics education. The teachers rated each statement on a Likert scale from 1 to 5, with 1 being not applicable in their practice, 2 being rarely applicable, 3 being moderately frequently applicable, 4 being frequently applicable and 5 being very frequently applicable. It was recommended that the participants use "rarely" if they employ the relevant strategies or STEAM activities in their practice with children once a month or less; "moderately frequently" should be marked if they use them several times a month, "frequently" - if they apply strategies or STEAM activities once or twice a week, and "very frequently" should be chosen if the teachers apply them daily. The internal consistency of the questionnaire statements is high as the Cronbach Alpha equals 0.952. The internal consistency of the separate parts of the questionnaire is greater than 0.8.

Sample. The research participants included early childhood teachers working with 3- to 6-year-old children. The teachers were sampled using the random probability sample strategy. Raosoft software suggested that the minimum sample size needed in this study is 982, with a 3% margin of error and a confidence level of 95%. The internet questionnaire was filled in by 1231 teachers (2.65% margin of error, 97% confidence level).

Methods of data analysis. Statistical data processing methods were applied for the analysis of quantitative research results. The obtained research data were processed using IBM SPSS Statistics 23.0 and MS Excel programs adapted for Windows. Methods of descriptive statistics were applied. The normality of the variables was checked with skewness (≤1 or >1) and kurtosis (≤1 or >1) of the distribution. The analysis of the research data indicated that all variables were normally distributed (see Table 1). Cluster analysis and the K-Means method were used to group teachers into groups according to social-emotional and cognitive teaching strategies they apply and the STEAM activities they practice. Pearson correlation was used to identify correlations between the teachers’ application of different teaching strategies and the practice of STEAM activities.

Procedure and ethics. All teachers participated in the questionnaire survey on a voluntary basis. The questionnaire was anonymous and full confidentiality was ensured.

4. Research results

In the present study, our aim was to reveal whether early childhood teachers are a homogeneous group in terms of which teaching strategies, social-emotional and/or cognitive they use more often to organise STEAM activities, as well as in terms of the frequency with which they implement integrated
STEAM activities (science, technology, engineering, art, maths). To achieve this, the cluster analysis of the data was carried out, the results of which are shown in Figure 1. The abbreviations used in this figure are as follows: M - Social - social-emotional teaching strategies; M_Cogn - cognitive teaching strategies; S - Science; T - Technology; E - Engineering; M - Maths; A - Arts. The data show that three clusters of early childhood teachers clearly stand out in terms of the teaching strategies used and the frequency with which they practise STEAM activities. Cluster 1 includes 27.86% of early childhood teachers, Cluster 2 encompasses 46.95% of teachers, and 25.18% of the participants are assigned to Cluster 3.

Figure 1. Teacher clusters according to the frequency of practicing social-emotional and cognitive teaching strategies and STEAM activities (standardised values).

In addition, we analysed how often early childhood teachers from different clusters use social-emotional and cognitive teaching strategies and how often they practise STEAM activities. The mean scores for the different teaching strategies and STEAM activities practised in the education of the children in their group are shown in Table 1.

Table 1. Mean scores of frequencies of applying different teaching strategies and practising STEAM activities.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Social-emotional teaching strategies</th>
<th>Cognitive teaching strategies</th>
<th>Science</th>
<th>Technology</th>
<th>Engineering</th>
<th>Arts</th>
<th>Maths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>4.66</td>
<td>4.13</td>
<td>3.78</td>
<td>3.12</td>
<td>4.05</td>
<td>3.98</td>
<td>3.36</td>
</tr>
<tr>
<td>2</td>
<td>4.20</td>
<td>3.13</td>
<td>2.97</td>
<td>2.27</td>
<td>2.97</td>
<td>3.03</td>
<td>2.39</td>
</tr>
<tr>
<td>3</td>
<td>3.13</td>
<td>1.95</td>
<td>2.23</td>
<td>1.71</td>
<td>2.00</td>
<td>2.03</td>
<td>1.76</td>
</tr>
</tbody>
</table>

The data show that Cluster 1 includes early childhood teachers who frequently and very frequently use both social-emotional and cognitive teaching strategies when implementing STEAM activities in early childhood education. The average score for the use of teaching strategies is between 4 (used frequently) and 5 (used very frequently). These educators practise social-emotional teaching methods such as listening to children, dialogue-based interaction with children, developing emotionally engaged learning, promoting emotional self-regulation, etc. They also use cognitive teaching methods: they practise child-friendly experiential techniques that encourage the development of higher-order thinking skills of young children (discriminate, compare, group, model, predict, reflect, argue), and they use techniques that stimulate children's deep learning, reflecting on their own cognitive experiences and others. Teachers assigned to Cluster 1 practise STEAM activities with early age children moderately frequently and frequently. The average score for practicing STEAM activities is between 3 (used moderately frequently) and 4 (used frequently).

Cluster 2 includes early childhood teachers who use social-emotional teaching strategies frequently and very frequently (mean score - 4.2), but only moderately frequently apply cognitive teaching strategies (mean score - 3.13). These teachers favour social-emotional teaching methods as they develop
personalised educational interactions with children, and their emotional response to children's interest is sensitive and frequent. They pay much less attention to cognitive methods. This is probably the reason why teachers in Cluster 2 practise science, engineering and art activities with early age children moderately often (mean scores - 2.97 and 3.03), and technological and mathematical activities rarely (mean scores - only 2.27 and 2.39).

Early childhood teachers in Cluster 3 also prioritise social-emotional teaching strategies but use them less frequently in STEAM activities than teachers assigned to Cluster 2, that is, only moderately often (mean score - 3.13). However, these teachers rarely use cognitive strategies to teach pre-school children. This clearly has an impact on the practice of STEAM activities in early childhood education, as these teachers rarely offer STEAM activities to children in their groups.

It can be assumed that the frequent and very frequent application of both teaching strategies (social-emotional and cognitive) is related to the frequent and very frequent practice of STEAM activities. In addition, teachers who are less likely to use cognitive teaching strategies are also more unlikely to practice STEAM activities.

To test this hypothesis, we found correlations between the social-emotional and cognitive teaching strategies used by early childhood teachers and the frequency of practicing STEAM activities. Pearson correlation was applied considering the normal distribution of the test data. The classical Pearson correlation coefficient was used: a coefficient value of up to 0.2 indicates a very weak correlation, 0.20 to 0.39 shows a weak correlation, 0.40 to 0.69 refers to a moderate correlation, 0.70 to 0.89 indicates a strong correlation, 0.90 to 0.99 demonstrates a very strong correlation, and when the coefficient value is 1, the relationship is linear.

<table>
<thead>
<tr>
<th>Teaching strategies</th>
<th>Science</th>
<th>Technology</th>
<th>Engineering</th>
<th>Arts</th>
<th>Maths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social-emotional teaching</td>
<td>0.458</td>
<td>0.407</td>
<td>0.517</td>
<td>0.447</td>
<td>0.586</td>
</tr>
<tr>
<td>strategies</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
<td>p<0.001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Cognitive teaching strategies</td>
<td>0.552</td>
<td>0.510</td>
<td>0.583</td>
<td>0.554</td>
<td>0.659</td>
</tr>
<tr>
<td></td>
<td>p<0.0001</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
<td>p<0.001</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

The data show that the relationship between the frequency of practicing social-emotional and cognitive teaching strategies and STEAM activities is moderate with all estimates of Pearson correlation coefficient ranging between 0.407 and 0.659, and the relationship is statistically significant (p<0.0001). Pearson correlation revealed a slightly stronger correlation between the frequency of using cognitive education methods and practicing STEAM activities (0.510-0.659, p<0.0001) than between the frequency of using emotional-social education methods and practicing STEAM activities (0.407-0.517, p<0.0001).

5. Discussion and conclusions

Our study highlights a number of important aspects. Although most researchers (Yata et al., 2020; Aydin, 2020; Kastriti et al., 2022) point to the relevance of cognitive learning approaches in STEAM education, the results of our study show that it is not only cognitive, but also social-emotional teaching strategies that are relevant in the educational process. Our study reveals that teachers who are most likely to develop integrated STEAM activities in early childhood education are equally likely to use both cognitive and social-emotional teaching strategies. Teachers use listening pedagogy particularly frequently as hearing children's voices allows them to support the development of STEAM activities that are relevant to children and promote their motivation. To achieve dialogue-based interactions, teachers use collaborative participation and joint thinking methods, working together with the children, participating in STEAM activities they initiate or propose. Teachers use provocations, contexts that promote emotional engagement and timely responses to the child's emotional experience.

Some researchers justify the prioritisation of "soft skills" in early childhood education (Laureta, 2018). Our study reveals that about two-thirds of early childhood teachers also prioritise social-emotional teaching strategies for teaching children and less frequently use cognitive strategies. Such teachers employ STEAM activities less frequently. Possible assumptions of this fact are revealed by research carried out by other authors, which shows that early childhood teachers lack not so much motivation, but rather subject-specific STEAM knowledge, understanding of technological and engineering processes, and familiarity with methods that stimulate children's technological, engineering, and mathematical thinking (Bers et al., 2013; John et al., 2018; Yata et al., 2020). This fosters a fear of using practices based on exploration, modelling, designing, and testing to promote the development of children's higher order thinking skills and deep learning.
Our study reveals a statistically significant relationship between the frequency of social-emotional and cognitive teaching strategies and the frequency of practicing STEAM activities, although the relationship between the frequency of cognitive teaching strategies and the development of STEAM practices is slightly stronger. This is in line with the rationale for the effectiveness of cognitive approaches to STEAM education presented in Kastriti et al. (2022). The mastery and increased practice of cognitive teaching strategies could lead to the development of STEAM activities in early childhood education.

References

